
Digital Object Identifier (DOI) 10.1140/epjc/s2005-02244-7
Eur. Phys. J. C 42, 227–241 (2005) THE EUROPEAN

PHYSICAL JOURNAL C

Linear derivative Cartan formulation of general relativity
W. Kummera, H. Schütz
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Abstract. Beside diffeomorphism invariance also manifest SO(3, 1) local Lorentz invariance is implemented
in a formulation of Einstein gravity (with or without cosmological term) in terms of initially completely
independent vielbein and spin connection variables and auxiliary two-form fields. In the systematic study of
all possible embeddings of Einstein gravity into that formulation with auxiliary fields, the introduction of a
“bi-complex” algebra possesses crucial technical advantages. Certain components of the new two-form fields
directly provide canonical momenta for spatial components of all Cartan variables, whereas the remaining
ones act as Lagrange multipliers for a large number of constraints, some of which have been proposed
already in different, less radical approaches. The time-like components of the Cartan variables play that
role for the Lorentz constraints and others associated to the vierbein fields. Although also some ternary
ones appear, we show that relations exist between these constraints, and how the Lagrange multipliers are
to be determined to take care of second class ones. We believe that our formulation of standard Einstein
gravity as a gauge theory with consistent local Poincaré algebra is superior to earlier similar attempts.

1 Introduction

For many decades the standard approach to the Hamil-
tonian formulation of general relativity (GR) has been
the use of specific geometric variables, introduced by
Arnowitt, Deser and Misner (ADM) [1]: the lapse and
shift functions, the intrinsic curvature and the three space
metric on space-like surfaces which determine the foliation
corresponding to a time coordinate x0. The Hamiltonian
analysis leads to four constraints, the Hamiltonian and the
diffeomorphism ones, which are all first class. At the quan-
tum level the Hamiltonian constraint can by transcribed
as a formal functional differential equation, the so-called
Wheeler–DeWitt equation [2].

From the point of view of geometry it is well known
that the description of a manifold by Cartan variables [3],
(one-form) vierbeins eA and the (one-form) spin connec-
tion ωAB (with A = 0, 1, 2, 3, describing the local Lorentz
coordinates), is the most comprehensive one. Only when
the torsion vanishes, as it is assumed in Einstein’s general
relativity (GR), the spin connection is expressed in terms
of the vierbeins and ceases to represent an independent
variable. In this interpretation the metric g = ηABeA ⊗eB

(diag η = (−1, 1, 1, 1)) is not a fundamental, but rather a
derived quantity. It owes its existence to the appearance
of just this combination of vierbeins in a Lagrangian of a
scalar test particle.
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The opposite interpretation consists in taking the spin
connection as the more basic variable.1 In that way a
closer resemblance to the well-studied Yang–Mills theories
could be achieved. This has been the key to Ashtekar’s
identification of an (anti-) selfdual spin connection with
an SO(3) Yang–Mills field [5] which by introducing no-
tions from the Yang–Mills case like Wilson loops allowed
for many important new developments (cf. e.g. [6]). The
price to pay in Ashtekar’s original formulation was the
extension to complex fields which, in the end, had to be
reduced by imposing a reality condition. Including a sec-
ond SO(3) connection proportional to the Immirzi param-
eter β, Barbero [7] showed that most of the advantages of
Ashtekar’s formulation (e.g. polynomial constraints) could
be retained for a real value of β which in Ashtekar’s ap-
proach would have to be imaginary. However, that param-
eter introduced an ambiguity (“Immirzi ambiguity”) in a
quantized theory [8]. At present perhaps the most elab-
orate version of this general line of research is the one
pursued up to the level of quantum theory by Thiemann
[9].

Still, also in the developments originating from the
connection type formulation the vanishing torsion condi-
tion is incorporated as a given relation between connection
and vierbeins from the start.

On the other hand, the idea to at least initially treat
both types of variables as independent ones goes back to

1 The most consequent “connection” formulation of gravity
is perhaps the one by Capovilla and Jacobson [4].
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Palatini [10]2 who showed it to be a peculiar property of
the Hilbert–Einstein action for GR that it also yields the
metricity condition and the condition of vanishing torsion.
In its modern version [11] in terms of Cartan variables the
“Hilbert–Palatini” action

(
ε0123 = −ε0123 = 1

)
3,

S(HP) =
1
2

∫
M4

RAB ∧ eC ∧ eDεABCD , (1)

with the curvature two-form

RAB = dωAB + ωA
C ∧ ωCB , (2)

by independent variation of the vierbeins eA and of the
spin connection ωAB fields yields vanishing torsion,

τA = (De)A = deA + ωA
B ∧ eB = 0, (3)

and the Einstein equations of GR. Because (1) only con-
tains first derivatives of ωAB , this is usually referred to as
the first order formulation of GR.

The connection form can be regarded as an SO(3, 1)
gauge field. This implies that ωAB defines a connection in
a principal fiber bundle P (M, SO(3, 1)) or vector bun-
dles associated with it. However, there is a basic difference
from ordinary gauge theories: the local gauge symmetry
is not independent of the effective action on the manifold;
it is rather the same. Nevertheless, the interpretation as
a gauge field turns out to be more successful when ω is
treated as an independent field.

When the description of geometry by Cartan variables,
instead of the metric as in the original ADM formalism, is
taken seriously it is natural to include Lorentz constraints
ΩAB which satisfy the Poisson brackets appropriate for
generators of local Lorentz invariance. Also the spatial
vierbein components eA

i (i = 1, 2, 3) must be associated
to conjugate momenta πAi

e which either from an action
like (1) become constraints by themselves or must be ex-
pressible in terms of other dynamical variables. On the
other hand, there were good reasons to retain the suc-
cessful ADM formulation in terms of lapse and shift. This
program of “tetrad gravity” started with a seminal paper
of Deser and Isham [12] and has been elaborated by sev-
eral authors (exemplary references are [13]). A common
complication of approaches of this type of formulations
has been the complexity of the computations required for
the determination of the Poisson brackets.4

2 More precisely, he viewed the metric and the covariant
derivative as independent variables in the Hilbert–Einstein ac-
tion.

3 This follows directly by interpreting ε as volume form and
following the usual index convention fA := f(EA) for indices
A, B . . . from the begining of the alphabet, referring to local
(anholonomic) Lorentz coordinates A = (0, 1, 2, 3) = (0, a). In-
dices I = (0, 1, 2, 3) = (0, i) from the middle of the alphabet are
related to holonomic coordinates. In the action the prefactor,
depending on Newton’s constant, is normalized to one.

4 A shortcut proposed by Teitelboim [14], namely to rely on
symmetry relations to avoid certain calculations, turned out
to be not applicable when terms of higher than linear order in
the constraints appeared [15].

To the best of our knowledge the first to consider
tetrad gravity in a first order formulation, e.g. with both
eA and ωAB as independent fields in the action (1), were
the authors of [16]. The condition of vanishing torsion ap-
pears as a second class constraint which expresses the spin
connection in terms of the vierbeins and necessitates the
introduction of Dirac brackets.

As mentioned already above, with the advent of
Ashtekar’s variables [5] the emphasis shifted towards the
connection components ωABI of ωAB = ωABI dxI . In the
Palatini-type action (1) the corresponding conjugate mo-
menta π

(AB)
ω become bi-vector5 components proportional

to (e)AB = eA ∧ eB . This can be taken care of by adding
the constraints, φij = εABCDπABi

ω πCDj
ω ≈ 0, so that the

spatial vierbein variables are eliminated from the start
(cf. e.g. [17]). A similar elimination of the vierbeins is the
one of [4] where only the connection is kept as a variable
already at the Lagrangian level.

The philosophy of our present paper is rather un-
conventional in the sense that both Cartan variables are
treated “democratically”; vanishing torsion does not ap-
pear by the Palatini mechanism, but is imposed explicitly
with the help of a Lagrangian multiplier which at first
sight may appear as something of an overkill. However,
it owes its basic idea to progress made recently in 1 + 1
dimensional dilaton gravity theories, which includes spher-
ically reduced gravity from d dimensions, but also the
string-inspired dilaton model of CGHS [18] and other sim-
pler models, the most prominent being the one of Jackiw
and Teitelboim [19]. One of the present authors (W.K.)
[20] together with Schwarz at first in a special model with
non-vanishing torsion [21] realized the importance of us-
ing a temporal gauge in the Cartan variables which led to
extremely simple treatments of those models in the clas-
sical and quantum case [22,23]. In this development the
formulation as the linear derivative action of a “Poisson
Sigma model” [24,23]

S(LD) =
∫

M2

[Xdω + Xa Dea + εV (XaXa,X)] (4)

with real auxiliary fields X, Xa (a = 0, 1; the Hodge star of
2dω becomes R, the Ricci scalar in d = 2; ε = 1

2εab ea ∧ eb

is the volume form) played an important role. Indeed
all physically interesting models could be covered by a
“potential” V quadratic in Xa, i.e. generically including
non-vanishing torsion. By eliminating (algebraically) Xa

and the torsion dependent part of the spin connection
ωab = ωεab the usual torsionless dilaton gravity action
with dilaton field X could be reproduced, the two formula-
tions being locally and globally equivalent at the classical
as well as at the quantum level [22,25]. However, on the
basis of (4) even a background independent quantization
of spherically reduced (torsionless Einstein) gravity has
been possible which actually reduces to (local) quantum
triviality in the absence of matter [22,23]. This formula-
tion recently has turned out to be able to solve as well

5 More on bi-vectors can be found in Appendix A.
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some long-standing problems in N = (1, 1) dilaton super-
gravity theories [26]. With respect to applications in string
theory the first determination of the full action (including
fermionic fields) for N = (2, 2) supergravity also has been
a consequence of this approach [27].

Actually the unique mathematical properties of an
action like (4) may be traced to the fact that it repre-
sents a (gravitational) example of a Poisson Sigma model
[24]. Such models share an important feature with Yang–
Mills theory, namely that the algebra of Hamiltonian (sec-
ondary, first class) constraints closes without derivative
terms on δ-functions, a property which lies at the root of
the relatively easy tractability of gravity theories in two
dimensions.

Thus it appears natural to generalize (4) from M2 to
a four dimensional manifold M4 with two-form auxiliary
fields XAB , Y A replacing the zero-forms X, Xa, and, of
course, a polynomial in eA ∧ eB and XAB instead of the
potential term εV. This generalization even may possess
physical justification. Remembering that in the 1 + 1 di-
mensional case one of the auxiliary fields (X in (4)) in
spherically reduced GR owes its presence to the dilaton
field, the same fact could be reflected in certain parts of
the new XAB which could be dilaton fields, related to
some compactification mechanism from a gravity theory
with dimension larger than four.

In the diploma thesis of one of the present authors
(H.S.) [28] this idea passed a positive test: an action of
generic type (4) on M4 with a large number of free pa-
rameters was shown to lead – up to a topological term
– to Einstein (–de Sitter) gravity, i.e. the action S(HP)

of (1), when the fields XAB , Y A are eliminated by al-
gebraic equations of motion (EOM). In this preliminary
work many questions were left open: a systematic anal-
ysis of all possibly relevant topological terms, a detailed
comparison with previous formulations, which, in princi-
ple, should be contained as special cases, a comparison
of EOM etc. Therefore, a detailed confrontation of a gen-
eral Palatini-type action with the new formulation is the
subject of Sect. 2, respectively Sect. 3.

In the canonical analysis (Sect. 4) we have to treat
a rather large set of constraints, because, in contrast to
d = 2, only part of the components of XAB and Y A be-
come canonically conjugate momenta, the rest being La-
grange multipliers, which turn out to be completely de-
termined.6 The structural similarity to a gauge theory
suggests a foliation directly in our “time” coordinate x0

without the introduction of lapse and shift variables. This
represents perhaps the most basic difference with respect
to the usual tetrad gravity, where almost everywhere7 the
ADM decomposition had been used. In our case the result-
ing constraints are polynomial and their Poisson brack-
ets (with one “inessential” exception) rather yield delta
functions on the right-hand side, just as for a non-abelian
gauge theory and the aforementioned Poisson Sigma mod-
els – and not derivatives thereof as for the ADM con-

6 This must be the case, of course, because we do not intro-
duce new physical degrees of freedom.

7 Among more recent exceptions we are only aware of [29].

straints. As we proceed in this analysis we have opportu-
nities to compare with previous works and their relation
to our present approach. Our analysis suggests that a lin-
ear combination of the initial constraints yields first class
ones that fulfil the Poincare algebra of special relativity
as algebra of the Poisson brackets.

In the final section, Sect. 5, we summarize the results
obtained, list open problems and indicate some possible
directions of future work. Some calculational details are
relegated to the appendices: important formulas on vec-
tor forms are collected in Appendix A, the rules of the
“hat calculus” are listed in Appendix B. Some complicated
Poisson brackets are collected in Appendix C. All brackets
have been computed by hand and checked by a computer
algebra package. In Appendix D we give details on the de-
termination of the Lagrange multipliers whose final results
appear in the main text.

2 Alternative formulations of Einstein gravity

In order to create a basis for the comparison of the actions
in the ensuing EOM of our approach in terms of Cartan
variables and auxiliary fields (Sect. 3) we collect here some
well-known formulations in an appropriate notation.

First we note that S(HP) of (1) can be written in several
equivalent ways. Introducing the duality operation for the
two-form components FAB of a bi-vector F ,8

F̂AB :=
1
2

εABCD FCD, (5)

the identity

êAB = ∗eAB , (6)

with fAB :=
(
f2
)AB = (f ∧ f)AB = fA ∧ fB = −fBA,

for an oriented orthonormal co-basis eA can be derived
easily. Equation (6) allows one to replace the hat by the
Hodge star operation in (1),

S(HP) =
∫

êAB ∧ RAB =
∫

∗eAB ∧ RAB . (7)

Hence, in terms of this type one can move not only the
hat, but also the Hodge star operation freely onto RAB ,
the anholonomic components of the Ricci tensor, as well.
It will be important in the next section that all such terms
are equivalent.

Variation of S = S(HP) + S(M), where S(M) is some
matter action, with respect to δeA yields9 the Einstein
equations in the form

R̂BA ∧ eB =
(

RAC − 1
2

R ηAC

)
∧ (∗eC

)
=

1
2
TA , (8)

8 Appendices A and B should be consulted for more details
on bi-vectors, respectively the hat calculus.

9 Here and thereafter we neglect surface terms.
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where the energy momentum three-form TA is defined in
terms of a matter action S(M) as

δS(M) =
∫

M4

(
δeA ∧ TA +

1
2
δωAB ∧ SAB

)
. (9)

Variation of δω leads to(
De2)AB

= τA ∧ eB − τB ∧ eA =
1
2
SAB , (10)

with the torsion two-form (cf. (3))

τA = deA + ωA
B ∧ eB . (11)

For vanishing “spin current” SAB it can be shown that
the vanishing of the left-hand side of (10) holds if and
only if the torsion τA vanishes. This is a special case of
a simple lemma (see Appendix A) which, in a less trivial
application, also allows one to determine the solution τA

in terms of a non-vanishing SAB in (10).
The first Bianchi identity (Dτ)A =: DA B τB = RA B ∧

eB guarantees that adding an analogous “hat-less” term
to (7) with parameter γ ∈ R

S′
(HP) =

∫
M4

(
êAB ∧ RAB + γeAB ∧ RAB

)
, (12)

the EOM (8) are modified to

R̂AB ∧ eB =
1
2
TA − γ (Dτ)A . (13)

The “torsion equation” (10) also changes into(
De2)AB

=
1

2γ2

(
SAB + γŜAB

)
. (14)

Thus, due to the first Bianchi identity also in that case
the Einstein equations are recovered for vanishing spin
current SAB and vanishing torsion. Identifying γ−1 with
the Immirzi parameter β shows that Barbero’s Hamilto-
nian [7] can be reproduced in this way. Although (7) and
(12) yield the same classical solutions to the EOM, at the
quantum level, of course, the theories would be expected
to be different.10

Further terms which could be added to S(HP) without
changing the EOM are two topological ones: the Gauss–
Bonnet–Chern form

L(GBC) =
1

16π2 R̂AB ∧ RAB (15)

and the Pontrijagin form

L(P) =
1

8π2 RAB ∧ RAB . (16)

10 We use this cautious formulation because according to the
work of [30,31] there exists an Ashtekar-like formulation where
the connection is the one of the full SO(3, 1) and where γ ap-
pears as an “anomaly candidate”, to be removed by renormal-
ization.

By analyzing all terms quadratic in RAB according to
the rules of Appendix B (with hats and stars distributed
over both factors) it can be verified by means of the sec-
ond Bianchi identity (DR)AB =

(
D̂RAB

)
= 0 that (15)

and (16) are the only possibilities. Thus the most general
Palatini-type action to be compared with our own formu-
lation below can be written as

S
(ext)
(HP)

=
∫

M4

(
RAB ∧ êAB + γRAB ∧ eAB + ρRAB ∧ RAB

+ σRAB ∧ R̂AB +
Λ

12
êAB ∧ eAB

)
, (17)

with general parameters γ, ρ, σ. The last term with
the cosmological constant Λ allows one to include the
Einstein–de Sitter case as well.

For completeness we also place the complex formula-
tion of real GR [5] into the present context. For the (anti-)
selfdual connections

ω±
AB :=

1
2

(ωAB ± iω̂AB) (18)

only three of the six components of ω±
AB are linearly in-

dependent over C. Analogously, the (anti-) selfdual curva-
ture is defined by

R±
AB (ω) :=

1
2

(
RAB (ω) ± iR̂AB (ω)

)
. (19)

Applying the hat operation (5) to (19) the HP action (1)
can be rewritten as

S(HP) = i
∫

M4

[−R+
AB + R−

AB

] ∧ eAB . (20)

Choosing ω±
0a as a basis (A = 0, a etc.) from (18) and (19)

the components of the (anti-) selfdual curvature can be
expressed as

R±
0a = dω±

0a ± iε0a
cdω±

0c ∧ ω ±
0d , (21)

with the structure constants ε0a
cd implying that the Lie

group for ω±
0a is SO (3, C). Ashtekar’s variables arise if

one of the two terms in the real action (20) is dropped so
that the contribution of the variation with respect to the
“complex conjugate” connection one-form disappears. In
contrast ours will be a full SO(3, 1) gauge formulation as
shown below.

3 Actions with auxiliary fields

3.1 Equivalent action

Motivated by the success of the analogous 1 + 1 dimen-
sional dilaton theory (4) the basic ansatz of our approach

S(LD) = S(X) + S(Y ) + S(Λ̃) , (22)



W. Kummer, H. Schütz: Linear derivative Cartan formulation of general relativity 231

with

S(X) (X, ω, e)

=
∫
M

1
2

(
a0X

AB ∧ XAB + a1X
AB ∧ ∗XAB

+ a2X
AB ∧ X̂AB

+ a3X
AB ∧ ∗X̂AB + b0X

AB ∧ RAB + b1X
AB ∧ ∗RAB

+ b2X
AB ∧ R̂AB + b3X

AB ∧ ∗R̂AB + c0X
AB ∧ eAB

+ c2X
AB ∧ êAB

)
, (23)

S(Y ) =
∫
M

Y A ∧ (De)A , (24)

S(Λ̃) =
Λ̃

12

∫
M

êAB ∧ eAB , (25)

consists of at most quadratic expressions in auxiliary two-
form fields XAB , Y A, the curvature RAB and the bi-
vector eAB . Equation (24) explicitly imposes the condi-
tion of vanishing torsion, although, as is well known (cf.
also Sect. 2), the Palatini mechanism implies this any-
how. However, the advantage is that in this way, at least
at the start, an independent momentum variable, canon-
ical conjugate to eAi, has been introduced. The even-
tual appearance of a cosmological term has been fore-
seen by the inclusion of S(Λ̃) in (25). It should be noted,
however, that the “effective” cosmological constant Λ in
the equivalent Einstein–de Sitter theory will also acquire
contributions from combinations of the constants ai, bi

(i = 1, ..., 4) , c0, c2. The restriction to coefficients c0 and
c2 only in the last two terms of (23) originates from the
identity (6). In the rest of (23) simply all independent
starry and hatted terms have been collected. It should
be noted that the formulations of gravity as a BF-theory
exhibit a certain similarity to our ansatz, the main differ-
ence being that our two-form auxiliary fields XAB are not
simply proportional to eAB (cf. (29) below) [32] and Y A

(at least initially) does not vanish. A more compact form
of (23) is obtained by noting that the hat as well as the
Hodge star operator – in our applications to bi-vectors
only – act like (mutually commuting) imaginary units
of two independent complex structures (i2 := −1, j2 :=
−1, ij = ji, (a + ib)∗ := a − ib, (c + jd)∧ := c − jd)

a ∗ XAB =: aiXAB ,

a X̂AB =: ajXAB , (26)

a ∗ X̂AB =: aijXAB.

This permits abbreviations of the form

a = a0 + a1i + j (a2 + ia3) =: a(1) + ja(2) (27)

in (23) which may be considered as elements (27) of a “bi-
complex” algebra C2: with non-trivial, i.e. different from
zero, not necessarily invertible elements a,b, c (for a first
analysis cf. [28]):

S(X) =
∫

1
2

(
(aX)AB ∧ XAB + (bX)AB ∧ RAB

+ (cX)AB ∧ eAB

)
. (28)

The resulting EOM from variation of δXAB

XAB = −a
2

−1 (
bRAB + ceAB

)
(29)

are solved with the inverse of (27),

a−1 =
a(1) − ja(2)

a(1)
2 + a(2)

2 = |a|−4 (a(1)
2 + a(2)

2)∗ a∧ , (30)

where

a(1) := a0 + ia1,

a(2) := a2 + ia3, (31)

|a|4 :=
(
a(1)

2 + a(2)
2) (a(1)

2 + a(2)
2)∗ ≥ 0.

The existence of (30) and hence of (29) is guaranteed if
the ai’s are chosen such that |a| �= 0.

The linearity of (29) guarantees that the variational
principle remains unchanged by the insertion of (29) in
(28). Thus the extended HP-action (17) is reproduced if
after insertion of (29) the coefficients in

S(X) =
∫
M

1
2
[
(kRAB) ∧ RAB + (lRAB) ∧ eAB

+ (meAB) ∧ eAB
]

(32)

are chosen as

k = −1
4
a−1b2 = 2 (ρ + jσ ) ,

l = −1
2
a−1bc = 2 (γ + j) , (33)

m = −a−1

4
c2 = m0 + jm2 . (34)

In the ansätze (33) for the RHS expressions involving the
second “imaginary” unit i do not appear. The reason is
that there are no topological terms of the curvature two-
form RAB containing the Hodge star in (17). This implies
that the bi-complex algebra C2 may be effectively pro-
jected upon C (cf. the property of the full solution, (38)
below).

With the ansatz (34) for m the identity

4km = l2 (35)

directly determines

m2 = c0 + c2 γ =
2ργ + σ

(
1 − γ2

)
2 (σ2 + ρ2)

. (36)

In (34) m0 is irrelevant because eAB ∧ eAB ≡ 0, whereas
(35) together with (25) provide contributions to the cos-
mological constant Λ in (17):

Λ = Λ̃ + 6m2. (37)
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The identity (35) implies that the coefficients a,b, c in
the action (28) cannot be obtained uniquely from (33)
and (34). Inserting the full solution with q ∈ C2,

a = −4q2k, b = −4qk, c = −2ql, (38)

into the action S(X) of (23) shows that the arbitrary in-
vertible element q corresponds to a rescaling qXAB →
XAB which is always possible.11 If the coefficient b of the
term XAB ∧ RAB is chosen to be 1 as in the 2D counter-
part (4) we may fix the overall factor as −4kq = b = 1.
Therefore, in

S(X) =
∫
M

1
2

XAB ∧ (RAB + aXAB + ceAB
)

(39)

the coefficients

a = − ρ − jσ
8 (ρ2 + σ2)

, c =
ργ + σ + j (ρ − σγ)

2 (ρ2 + σ2)
(40)

together with (36) provide agreement with the generalized
Palatini-type action (17). As at least one of the coefficients
ρ or σ must be non-vanishing the appearance of at least
one topological term (15) or (16) is mandatory. The coef-
ficient c cannot be made to disappear altogether. Not sur-
prisingly, also the terms quadratic in X must be present
always. A solution with b = 0 is not possible (cf. (33)).
It would correspond to the BF-model of [32]. Our present
formulation (39) can be interpreted as the most compre-
hensive version of a generalized BF-model [33]. On the
other hand, dropping the term with the Immirzi parame-
ter (γ = 0) in (12) according to (40) is perfectly consistent
with the ansatz (22), respectively (28).

An alternative nice parametrization of (40) follows
from ρ = r cos ϕ, σ = r sin ϕ:

a = −(8r)−1e−jϕ, c = (2r)−1 e−jϕ (γ + j ) , (41)

which interpolates by variation of ϕ between vanishing ρ,
respectively σ. It also shows that the most “symmetric”
solution for a and c is the one for γ = 0.

3.2 Equations of motion from auxiliary field action

The algebraic equivalence of the actions (39) and (17) –
even by only linear relations – guarantees identical dy-
namical content. Nevertheless, the explicit form of the
EOM from (39) will be very useful for comparison with
the ones derived from the Hamiltonian. Variations of
δYA, δXAB , δωAB and δeA, respectively yield

τA = 0, (42)

2aXAB + RAB + ceAB = 0, (43)

11 This possibility removes the only variable which could be
an element of the whole bi-complex algebra. Nevertheless, the
latter is useful to keep the discussion very simple but still com-
pletely general, at the intermediate steps leading to (39) and
(40), but also in the Hamiltonian analysis below.

(DX)AB +
(
Y A ∧ eB − Y B ∧ eA

)
= 0, (44)

(DY )A + cXAB ∧ eB +
Λ̃

3!
εA

BCDeB ∧ eCD = 0, (45)

which allow for further simplification. The commutativity
of the hat operation with the covariant derivative applied
to (43) leads to

2a (DX)AB + (DR)AB + c
(
De2)AB

= 0, (46)

where the second term vanishes by Bianchi’s second
identity. The third one is eliminated by (10) and (42).
In (44) this leads to the disappearance of the first
term, and the rest by the same argument as for (10)(
SAB = 0 ⇔ τA = 0

)
forces Y A = 0.

Therefore, the last two equations (44) and (45) may
be replaced by

Y A = 0 , (47)

cXAB ∧ eB +
Λ̃

6
εA

BCDeB ∧ eCD = 0. (48)

It is straightforward to verify that the set (37), (42), (43),
(47) and (48) is equivalent to the EOM from (17). We also
emphasize that the vanishing of torsion by (42) as well as
of the related auxiliary field Y A, according to (47), in our
approach occurs on-shell only.

4 Hamiltonian analysis

4.1 Canonical Hamiltonian

The action (39) is of Hamiltonian form. Due to the lin-
earity in the derivatives the momenta are directly asso-
ciated to (part of the components of) the auxiliary fields
XAB , Y A. The identification in such cases is an allowed
short cut (cf. [28]), although, strictly speaking the corre-
sponding relations are second class constraints.

Using the transcription rule in the typical two-form
multiplications

U ∧ V = (U0i Vjk + UjkV0i)
εijk

2
d4x (49)

for ε0ijk = −εijk (the Levi-Civitá symbol with ε123 = 1)
to obtain the different pieces of the action (39) in terms of
corresponding parts of the Lagrangian density L = L(X)+
L(Y ) + L(Λ̃), the result is

L(X) =
εijk

4
{
XAB

0i (2aXABjk + RABjk + ceABjk)

+ XAB
jk (∂0ωABi) + eAB0icXAB

jk (50)

+ ωAB0
(
∂iX

AB
jk + ωA

CiX
CB

jk − ωB
CiX

CA
jk

)}
,

L(Y ) =
εijk

2
{
Y A

0iτAjk + (∂0eAi) Y A
jk

+ eA0
(
∂i Y A

jk + ωA
Ci Y C

jk

)
(51)
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+
1
2
ωAB0

(
Y A

jkeB
i − Y B

jk eA
i

)}
,

L(Λ̃) = εijk Λ̃

6
eA0ε

A
BCD eB

i eC
j eD

k. (52)

In (50) and (51) as in all previous computations total di-
vergencies again have been disregarded.

The momenta conjugate to ωABi, respectively eAi,
with x0 defined as a time coordinate for any coordinate
map

(
xI
)
, can be read off from (50) and (51):

πABi
ω = ΠABi :=

εijk

2
XAB

jk , A < B , (53)

πAi
e = πAi :=

εijk

2
Y A

jk , (54)

whereas the conjugate momenta of ωAB0 and eA0 vanish
as primary constraints. Therefore, we may effectively drop
the set eA0, ωAB0, XAB0i, YA0i from the ranks of canon-
ical variables, but treat them as Lagrange multipliers.
This reduces the dimension of our phase space consid-
erably from Nph = 2 · (16 + 24 + 36 + 24) = 200 to
Nph = 2 ·(12+18) = 60. The canonical Hamiltonian (from
now on we use ∂0f =: ḟ , xABi := XAB0i, yAi := YA0i)

H(can)

=
∫

d3x

(
1
2
ΠABi ω̇ABi + πAi ėAi − L

)
=
∫

d3x

(
eA0E

A +
1
2
ωAB0Ω

AB

+
1
2
xABiC

ABi + yAiT
Ai

)
(55)

depends on the constraints

ΩAB = ΩAB
(X) + ΩAB

(Y ) ≈ 0 , (56)

EA = EA
(X) + EA

(Y ) + EA
(Λ̃) ≈ 0 , (57)

where in all cases the origin of the respective contributions

−ΩAB
(X) = DiΠ

ABi = ∂iΠ
ABi + ωA

CiΠ
CBi − ωB

CiΠ
CAi ,

(58)

−ΩAB
(Y ) = πAieB

i − πBieA
i , (59)

−EA
(X) = cΠABieBi , (60)

−EA
(Y ) = Diπ

Ai = ∂iπ
Ai + ωA

Biπ
Bi , (61)

−EA

(Λ̃) =
Λ̃

6
εABCDεijkeBieCjeDk (62)

is indicated, and

−TAi = −TAi
(Y ) =

1
2
τA

jk εijk

=
(
∂je

A
k + ωA

Bje
B

k

)
εijk ≈ 0 , (63)

−CABi = −CABi
(X)

= 2aΠABi + RABi + ceABi ≈ 0 . (64)

We made use of the convenient abbreviation (already sug-
gested by (53))

WABi :=
εijk

2
WAB

jk (65)

for any two-form WAB . With that definition we have e.g.
from (53) and (54)

XABi = ΠABi, Y Ai = πAi . (66)

By counting the degrees of freedom12 one immediately
infers that these 6+4+12+18 = 40 constraints cannot all
be independent first class for the 30 variables (eAi, ωABi),
and thus their Poisson bracket algebra will not close.

The Poisson brackets13 of the six constraints ΩAB ,
the constraints conjugate to ωAB0, with all sec-
ondary constraints become (e.g. EA′

is a shorthand for
EA′

(
x0, xi′

)
), δ := δ3

(
xi − xi′

)
{ΩAB , EA′} =

(
ηAA′

EB − ηBA′
EA
)

δ , (67)

{ΩAB , ΩA′B′} =
(
ηAA′

ΩBB′ − ηBA′
ΩAB′

(68)

+ ηBB′
ΩAA′ − ηAB′

ΩBA′)
δ ,

{ΩAB , CA′B′i′} =
(
ηAA′

CBB′i′ −ηBA′
CAB′i′

(69)

+ ηBB′
CAA′i′ −ηAB′

CBA′i′)
δ ,

{ΩAB , TA′i′} =
(
ηAA′

TBi′ − ηBA′
TAi′)

δ , (70)

and whence are weakly equal to zero. Equations (67)–(70)
suggest that ΩAB are proper generators of local Lorentz
transformations.

The computation of the Poisson brackets of the 34 re-
maining, non-first class secondary constraints, on the one
hand, yields

{CABi, CA′B′i′} = 0 , (71)

{TAi, TA′i′} = 0 , (72)

{EA, EA′} = −
(
cCAA′

+ ΛεAA′
CDTCieD

i

)
δ , (73)

which also weakly vanish. But, on the other hand,
upon conservation of the secondary constraints
EA, ΩAB , CABi, TABi the remaining brackets

{CABi, TA′i′} = 2a
(
ηAA′

eB
k′ − ηBA′

eA
k′
)

εi′i k′
δ , (74)

{EA, TA′i′} =
(
CAA′i′

+ 2aΠAA′i′

+3c2j eAA′i′)
δ , (75)

{EA, CA′B′i′} =
(
c
(
ηAA′

TB′i′ − ηB′ATA′i′)
12 Our construction of the theory ensures that we have two
degrees of freedom as ordinary Einstein–de Sitter GR (see
Sect. 4.3 below).
13 The appropriate formulas of Appendix C may be consulted.
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+2a
(
ηAA′

πB′i′ − ηB′AπA′i′))
δ , (76)

imply the appearance of ternary constraints and the fact
that some of the secondary ones are second class. It should
be noted that in two dimensional gravity (4) [23] the Pois-
son bracket algebra of the secondary constraints yields
first class ones only, i.e. brackets like (74)–(76) do not ap-
pear there.

4.2 Ternary constraints

As a consequence of the Poisson brackets (75) and (76)
the time evolution of the constraints EA is given by

ĖA ≈ yA′i′
(
2aΠAA′i′

+ 3c2j eAA′i′)
+ xA′B′i′a

(
ηAA′

πB′i′ − ηAB′
πA′i′)

≈ 2a
(
yA′i′ΠAA′i′

+ xA
B′i′ πB′i′)

+ 3c2 jyA′i′ eAA′i′

≈ 0 , (77)

and the time evolution of CABi follows from (76) and (74)
as

Ċ
ABi ≈ yA′i′2a

(
ηAA′

eB
k′ − ηBA′

eA
k′
)

εii′k′

+ eA′0 2a
(
ηAA′

πBi − ηBA′
πA′i

)
≈ 2a

(
εii′k′ (

yA
i′ eB

k′ − yB
i′ eA

k′
)

+ eA
0π

Bi − eB
0π

Ai
)

≈ 0 . (78)

Finally the evolution equation for the twelve TAi are found
from (74) and (75):

Ṫ
Ai ≈ xA′B′i′ a

(
ηAA′

eB′
k′ − ηAB′

eA′
k′
)

εii′k′

+
(
2aΠAA′i + 3c2 j eAA′i′)

eA′0

≈ 2a
(
xAB′

i′ eB′k′ εii′k′
+ ΠAA′ieA′0

)
+3c2j eAA′i′

eA′0

≈ 0 . (79)

4.2.1 A relation between constraints

In order to render the system of equations consistent, one
either has to determine certain Langrange multipliers or
to introduce new constraints. We will see that both steps
will be necessary for our system.

Performing the same calculation as the one leading to
the second Bianchi identity14

DRAB |∂123 ≡ DiR
ABi

14 Spatial indices are raised according to convention (65).

= ∂iR
ABi + ωA

LiR
LBi − ωB

LiR
LAi = 0

for the curvature with respect to the spatial components
∂123 applied to the constraint CABi, (64), yields

−DiC
ABi = 2aDiΠ

ABi + cDie
ABi . (80)

Solving (cf. (58), (59), (64) and (66))

−ΩAB = −ΩAB
(X) − ΩAB

(Y )

= DiΠ
ABi + πAieB

i − πBieA
i , (81)

for DiΠ
ABi and using the identity (10) for SAB = 0 one

finds the six relations

DiC
ABi = 2a

(
ΩAB + πAieB

i − πBieA
i

)
+c
(
TAi eB

i − TBi eA
i

)
(82)

between the constraints CABi, ΩAB and TAi.
From (82) for invertible a follow the six weak relations

(cf. (59))

JAB := −ΩAB
(Y ) = πAieB

i − πBieA
i ≈ 0 (83)

between the 12 momenta πAi and their conjugate variables
eAi. These relations exactly coincide with the constraints
JAB in the previous literature [12,13]. Although the ΩAB

appear naturally in our approach as the generators of
the local Lorentz transformations (and vanish weakly by
themselves), they may be tied as well by ΩAB ≈ −JAB –
as can be observed from (82) – to these constraints which
played that role in the usual tetrad gravity. However, in
a theory where ωABi and eAi are treated as independent
variables as in our approach these are not the generators of
the local Lorentz transformations, but only a part thereof.
This can be seen, for instance, by looking at the Poisson
brackets (C.9) and (C.10) of Appendix C where the “non-
Lorentzian” parts just cancel in the sum of those two con-
tributions to {ΩAB , TA′i′}.

4.2.2 Lagrange multipliers and ternary constraints

The key to the solution of the constraint equation (78) is
the observation that the terms in the parentheses are just
(cf. (66))15

Y A ∧ eB − Y B ∧ eA|i ≈ 0 , (84)

and (83) is nothing else but

Y A ∧ eB − Y B ∧ eA|123 ≈ 0 . (85)

Thus one has to find a solution to

Y A ∧ eB − Y B ∧ eA ≈ 0 (86)

15 A suggestive notation for the projections ∂0jk
εijk

2 = |i and
∂123 = |123 will be used from now for the related components
of two-form and three-form equations.
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which we already know to be uniquely Y A ≈ 0 (cf. lemma
A of Appendix A):

yAi := YA0i ≈ 0 , (87)

πAi :=
1
2
εijkYAjk ≈ 0 . (88)

Equation (87) is a condition on Lagrange multipliers,
whereas (88) are new (ternary) constraints. Actually, the
result (87) and (88) was to be expected by our analysis of
the Lagrangian equations of motion (cf. (47)).

By means of these two conditions, however, not only
ĊABi ≈ 0 (cf. (78)), but also ĖA ≈ 0 (cf. (77)) is fulfilled
automatically.

Still, the conservation of the torsion constraint TAi

(79) and the one of the new momenta constraints (88)
(cf. (94) below) are not ensured yet. This will provide
conditions on the remaining Lagrange mulipliers xABi.

4.2.3 Time evolution of πAi

The Poisson brackets of the ternary constraints (88) with
all constraints are

{πAi, EA′} =
(
cΠAA′i + Λ̃j eAA′ i

)
δ (89)

{ΩAB , πA′i′} =
(
ηAA′

πBi′ − ηBA′
πAi′)

δ , (90)

{πAi, CA′B′i′} = c
(
ηAA′

eB′
k′ − ηAB′

eA′
k′
)

εii′k′
δ , (91)

{πAi, TA′i′} = −ηAA′
εii′k′

δ,k′ − ωAA′
k′ εii′k′

δ , (92)

{πAi, πA′i′} = 0 . (93)

Taking into account (87) and (88) their time evolution is
found to be

π̇Ai ≈ eA′0

(
cΠAA′i + Λ̃j eAA′ i

)
+

1
2

xA′B′i′c
(
ηAA′

eB′
k′ − ηAB′

eA′
k′
)

εii′k′
(94)

≈ c
(
eA′0Π

AA′i + eB′k′ xAB′
i′ εii′k′)

+ Λ̃j eA′0e
AA′ i .

It should be noted that the right-hand side of (92) is the
only instance where a derivative of the delta functional
occurs in our approach. However, since the corresponding
Lagrange multipliers yAi of the torsion constraints TAi

vanish anyhow by (87) and thus could be dropped in (94),
these particular Poisson brackets are of no importance for
the Hamiltonian analysis.

4.3 The remaining Lagrange multipliers xABi

4.3.1 Reformulation of the problem

Defining a two-form

ZAB ≡ 2aXAB +
(
c − Λ

6

)
eAB , (95)

we show in this subsection that the solution of ṪAi ≈ 0
(79) and π̇Ai ≈ 0 (94) can be reformulated as the solution
of the two weak three-form equations

ZAB ∧ eB ≈ 0 , (96)

ẐAB ∧ eB = jZAB ∧ eB ≈ 0 . (97)

The components of XAB in (95) consist of the Lagrange
multipliers XAB0i = xABi and of the XAB

jk which are
proportional to the momenta conjugate to ωAB

i (cf. (53)).
Therefore, (96) and (97) will be inhomogeneous linear
equations for xABi whose solution will be discussed in
Sect. 4.3.2.

The derivation of each of (96) and (97) consists of sep-
arate proofs for the projections |i and |123 (cf. footnote
15).

We first note that the bracket in the second line of
(79) is nothing else than XAB ∧ eB |i. Adding a vanish-
ing term (c0 − Λ/6) eAB ∧ eB to the last term of (79),
with c0 + jc2 = c allows one to identify that term with the
component |i of the last two terms (95). This proves (96)|i.
Also in (94) the bracket in the second line is XAB ∧ eB |i.
Together with the prefactor c =

(
ca−1

)
a = −4 (γ + j) a

(cf. (33)) the combination 2aXAB ∧eB |i can be expressed
by means of (the already proved) (96)|i by the correspond-
ing component from the last two terms in (95). Again we
may add a vanishing term proportional c2 eAB ∧ eB in or-
der to produce the combination c0 +γc2 in (36). Together
with (37) this leads (up to an overall factor ) to (97)|i.

To show the validity of (96)|123 and (97)|123 the con-
straints (57), (63), (64) and (88) suffice. Indeed from (57)
with (88) one arrives at the same expression as the one in
(94) but projected upon |123 instead of |i. However, before
concluding that (97)|123 holds, according to the interme-
diate step of our argument in the case |i, we first need the
proof of (96)|123. Multiplying the constraint (64) with eBi

one realizes immediately that the result in the expression
would coincide with (96)|123 if RABi ∧eBi ≈ 0. Taking the
definition of torsion from the torsion constraint (63) and
RAB from (2) the second Bianchi identity in the form

∂iT
Ai +

εijk

2
ωAD

j T k
B = RABieBi , (98)

of course, also holds here which for (63) implies the desired
result. Thus (96) and (97) are valid for all components.

4.3.2 Solution of xABi

Each one of the two equations (96) and (97) has 12 compo-
nents |i and four components |123, yielding altogether 32
linear equations for the 18 Lagrangian multipliers xABi,
eight of which are identities not including xABi. There-
fore, six relations between those components should hold
to make a unique solution possible.

As a first step one has to solve (96) and (97) as a
system of linear inhomogeneous equations for ZAB

0i , where
the RHS is linear in eA

0. Then from the definition (95) the
solution for xAB

i can be read off directly. This first step
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is by no means straightforward, however, it is enormously
simplified by exploiting the invariance of (96) and (97)
which allows one to perform that calculation in a suitable
frame. Locally the components eA

I of the vierbeins can
be transformed by a Lorentz transformation (γ = (1 −
v2)− 1

2 , v2 = vava)

�A
B =

(
γ γ vb

γva
[
δa
b + (γ − 1) vavb

v2

])A

B

(99)

and a diffeomorphism restricted to the space components
ea

i

tJ
I =

(
1 0
0 tj

i

)
, (100)

such that
˜̃eA

J = tJ
I ẽA

I = tJ
I �A

B eB
I (101)

is brought into the form

˜̃e0
i = 0 , (102)

˜̃ea
i = δa

i . (103)

Actually tj
i is nothing else than the 3D inverse 3Ẽa

i (in
the sense 3Ẽa

i ẽb
i = δb

a) where the index a is replaced by
j. Physically (102) means that at the space time point
considered, ẽ0

i , the analogon of the “shift”, is set to zero
and thus transformed to the rest frame, whereas the direc-
tions of the 3D holonomic frame have been rotated into the
Lorentz directions renormalized to one.16 Equation (102)
with (99) implies the velocity

vb = −3Eb
i e0

i, (104)

where now the 3D inverse of ea
j (in the sense 3Eb

i eb
j = δi

j)
has been used.

The condition v2 < 1 for the local Lorentz transfor-
mation amounts to the requirement 3gije0

i e0
j < 1 for the

norm of e
0
i with respect to the local 3D metric. Light-like

boosts are excluded in our present paper.
Clearly �A

B , as well as its inverted form �(−v) which
appears, when one returns to the original frame, will de-
pend in a complicated (non-polynomial) way on the orig-
inal e0

i and ea
i.

But the inverse
(
t−1
)
i

j simply coincides with ẽ
(a)
i ,

where, as in the inverse 3Ẽa
i above, the index (a) is re-

placed by the index j:17

Z̃ab
0i = ẽ

(j)
i

˜̃Zab
0(j) = �(j)B eB

i
˜̃Zab
0(j), (105)

Z̃ab
0i = ẽ

(j)
i

˜̃Z0b
0(j) = �(j)B eB

i
˜̃Z0b
0(j). (106)

16 This implies that in the present paper we restrict for sim-
plicity to eA

I which are not light-like, a case which must be
treated separately.
17 This mixed usage of some indices like j now is indicated by
(j).

We recall that the Lorentz transformations in (105) and
(106) depend on (minus) the velocity (104). The compo-
nents of Z in the general frame (without tilde)

ZAB
0j =

(
�−1)A

C

(
�−1)B

D
Z̃CD

0j (107)

contain two more Lorentz transformations with (minus)
the velocity (104). Therefore, at the end of the day, the
factors in the relation between Z and ˜̃Z are linear in eB

i ,
except for the Lorentz transformations of the type (99)
with (non-linear) velocity (104) and, of course, a non-
polynomial dependence on v in γ.

For foliations which do not require large velocities, a
low velocity limit of (99) suffices. However, (102) cannot
be reached in this way by a Galilei transformation. Instead
for small velocities v � 1 also a transformation

�̃A
B =

(
1 va

0 δa
b

)A

B

, (108)

may be considered which is a group contracted [34]
Lorentz transformation, obtained by rescaling va →
λva, xa → λ−1xa in the limit λ = 0. This is a “twisted”
version of the more familiar contraction towards the
Galilei transformation (va → λva, x0 → λ−1x0).

Having shifted essential parts of the problem into �a
b

and t the solution in the frame (102) and (103) is rel-
atively simple. Details are given in Appendix D (in the
frame (102) and (103) holonomic and anholonomic spa-
tial indices may be raised, lowered and combined freely):

˜̃Z0a
0i = −1

4
εaB

CD
˜̃ZCD

jk
˜̃eB0 εijk, (109)

˜̃Zab
0i = −1

2
εabj ˜̃ZiB

rs εjrs ˜̃eB0. (110)

Together with the vanishing multipliers (87) this resolves
the problem. As expected, the solution is found to be the
consequence of 18 among the 32 equations (96) and (97),
the remaining ones just yielding identities. The expres-
sions on the RHS of (109) and (110) not only are linear
in ˜̃ea

0 but also in the canonical momenta ˜̃ΠABi (cf. (66))
proportional to ˜̃ZABi

jk . These properties survive the (only
eA

i-dependent) linear transformations t−1, �(−v) when
returning by (108)–(110) to the original frame eA

I .
Thus the Lagrange multipliers are expressible as

xABi = hABi
C eC0, (111)

where the coefficients hABi
C = −hBAi

C are non-
polynomial functions of eA

i, but still linear in ΠABi. Ac-
cording to (55) with (87) and (111) this yields a Hamilto-
nian of the form (cf. also the last [13])

H =
∫

d3x

(
eA0Ẽ

A +
1
2
ωAB0Ω

AB

)
, (112)
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with the new constraints

ẼA = EA +
1
2

hCDi
A CCDi , (113)

which must be first class by comparing with the number of
degrees of freedom: Our theory involves the 30 phase space
variables (eAi, ωABi), the Nf = 10 first class constraints(
ẼA, ΩAB

)
or equivalently the 10 independent Lagrange

multipliers (eA0, ωAB0), the 12+18+12 = 42 second class
constraints

(
TAi, CABi, πAi

)
with the six relations (82)

between them, giving Ns = 36 independent second class
constraints. Thus, we find the number of physical degrees
of freedom according to standard textbook lore (cf. e.g.
[35]) as

Ndf = Nph −Nf − 1
2
Ns = 30−10− 1

2
(42−6) = 2 , (114)

which is precisely the correct one for GR and thus agrees
with counting according to our Hamiltonian analysis.

It should be noted that independent of the specific
variables one always encounters 10 first class constraints:
In Einstein–Cartan gravity with 12 variables eAi one ob-
tains 12 − 10 = 2 degrees of freedom, in the Ashtekar
approach with 18 ωABi the counting is 18 − 10 − 12

2 = 2,
where the last term originates from the second class con-
straints in that formulation.

The algebra of first class constraints (with respect to
appropriate Dirac brackets) should (strongly) equal the
Poincaré algebra:18

{ΩAB , ΩA′B′} (115)

=
(
ηAA′

ΩBB′ − ηBA′
ΩAB′

+ ηBB′
ΩAA′ − ηAB′

ΩBA′)
δ ,

{ΩAB , ẼA′} =
(
ηAA′

ẼB − ηA′BẼA
)

δ , (116)

{ẼA, ẼA′} = 0 . (117)

So far this final check has not been made, because of the
very messy algebra.

5 Conclusion and outlook

Motivated by the success of an analogous program in 1+1
dimensional gravity theories we present a reformulation
of Einstein (–de Sitter) gravity, strictly in terms of Car-
tan variables (one-form vierbeins eA and spin connection
ωAB), and of a first order derivative Hamiltonian action.

18 Of course, relations of this form, with the exception of
(117), have been conjectured from symmetry arguments for
a long time. They are e.g. the basis of Poincaré gauge theory
[11,36,37] (cf. also the last reference [13]). Primary constraints
with such an algebra also appeared in [29] in a tetrad theory
with dependent spin connection. However, in contrast to the re-
sults of those works, as seen from (90) our Lorentz constraints
possess all the correct commutators, especially also the ones
with the momenta πA

i of the vierbeins.

We do not rely upon the Palatini mechanism to arrive at
the dependent spin connection, but keep a separate condi-
tion for vanishing torsion. For that and in order to repro-
duce the usual Einstein gravity, sets of auxiliary two-form
fields (XAB , Y A) are introduced. Part of them become the
momenta, canonically conjugate to the dynamical compo-
nents of (space-like parts) of the spin connection and of
the vierbeins. The remaining components of the auxiliary
fields represent Lagrangian multipliers.

By comparison with the situation in 1 + 1 dimen-
sional gravity, resulting from spherical reduction of Ein-
stein gravity in four dimensions, the dilaton field X in that
case may even have a counterpart among certain “dilaton
fields” contained in XAB which also here may be the result
of a compactification mechanism from gravity in dimen-
sions larger than four.

Another speculation suggests itself by the different
ways the two contributions to the effective cosmological
constant Λ in (37) appear in the present formulation. By
now it has been established by a host of astronomical data
[38] that Λ, the dark energy, has a small but positive value.
This disagrees with supergravity which requires an anti-de
Sitter space with negative Λ [39]. That this result is un-
changed in related dilaton supergravity, e.g. for the 1 + 1
dimensional case has been demonstrated in [40]. Assuming
that the parts (23) and (24) of the action by themselves
are the result of compactifying a higher dimensional su-
pergravity, whereas the contribution (25) is determined by
the positive contribution from the standard model, there
is a chance of compensation, albeit still suffering from the
usual tremendous fine-tuning problem. In any case, the
undetermined sign of the second term in (37) allows for
such a solution.

In our approach we do not follow the usual route of
an ADM decomposition, instead being led rather natu-
rally to a Hamiltonian analysis, reminiscent of the one
in non-abelian gauge theory. Nevertheless, our approach
completely differs from the one advocated by Ashtekar
[5] and the work which has developed from that. On the
other hand, in the course of our analysis we encounter
constraints which in classical works on the interpretation
of the e.g. Lorentz invariance had been introduced – to a
varying degree – as ad hoc conditions (cf. e.g. [12,15]).

The price we have to pay is the appearance of ternary
and second class constraints which determines the afore-
mentioned Lagrange multipliers, the ternary constraints
being nothing else than the momenta canonically conju-
gate to the space components of the vierbeins. Already
in order to arrive at this point required the evaluation of
straightforward but – at intermediate steps – very lengthy
formulas for Poisson brackets which has been done by
hand and verified on the computer by a program pack-
age written for this purpose.

The very symmetric structure of our approach allowed
us to formulate the final Hamiltonian in a manner akin to
non-abelian gauge theories, i.e. in terms of first class con-
straints (with respect to appropriate Dirac brackets), mul-
tiplied by “time” components (eA0) of the vierbeins and
of the spin connection (ωAB0) – just like the Gauss con-
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straints in Yang–Mills theories. The explicit check of the
first class property for the set ΩAB , ẼA still requires an-
other exacting mathematical effort, but we are convinced
that the constraints of the (local) Poincaré algebra (115)–
(117) should be reproduced directly.

At this point we should emphasize again that our
approach contains the original SO(3, 1) local Lorentz
symmetry with associated connection – not reduced to
SO(3, C) as in Ashtekar’s formulation. In comparison with
other manifest SO(3, 1) approaches (cf. e.g. [30,31]) our
constraints and the associated constraint algebra are much
less involved.

Our approach lends itself to generalizations19 in sev-
eral directions, the most obvious one being to dynamical
torsion which also plays a role in the attempts to make GR
renormalizable (cf. e.g. [42]). Then an ansatz like (23)–
(25) must be supplemented by further terms linear and
quadratic in Y A. Dynamical torsion is a natural conse-
quence of Poincaré gauge theories of gravity [11,36,37].20

Another interesting field of applications may be the
teleparallelism formulations of Einstein gravity where the
spin connection is flat and the whole dynamical structure
resides in the Weitzenböck connection which is determined
by torsion alone [44] (cf. also here the review [43]).

However, it should be kept in mind that a polynomial
ansatz with auxiliary fields as in our case places certain
restrictions upon quadratic terms in torsion and – for that
matter – also upon terms quadratic in the curvature tensor
(cf. the remarks after (15) and (16)). On the other hand,
the extension of the space of variables by auxiliary fields
may be helpful in a quantum theory. Of course, it cannot
be expected that a full background independent quantiza-
tion of gravity can be obtained as in 1+1 dimensions [22,
23]. But our approach, although different from Ashtekar’s
one [5], also may allow for some of the developments which
were made possible by its structural similarity to Yang–
Mills theory in the Hamiltonian analysis.
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Nr. 7304 of the Austrian National Bank.

Appendix A: Form equations

In the analysis of the four dimensional Hamiltonian lin-
ear derivative action one frequently encounters three-form
equations of the type

ZA ∧ eB − ZB ∧ eA = SAB A, B = 0, ..., 3 (A.1)

19 For a comprehensive review of generalized gravity cf. [41]
20 A review on torsion, covering in particular the literature
on actions quadratic in torsion is [43].

for the two-form components (ZA) of a (1, 2) bi-form21

for the components
(
SAB

)
of an arbitrary right-hand side

(two, three)-form.
Lemma A. Equations (A.1) have a unique solution (cf. Ap-
pendix A of [45])

ZA = ιKSAK − 1
4

ιLιKSKL ∧ eA , (A.2)

with the inner derivative ιK meaning evaluation of the
form on the basis vector EK .

In our present paper we mostly need the homogeneous
case SAB = 0. Here clearly one solution is the trivial one
ZA = 0. A direct proof for the uniqueness of this solu-
tion to (A.1) with SAB = 0 follows from considering the
equations for the components ZA

CD in ZA = ZA
CD eCD

which follow from (A.1) at SAB = 0:

ZA
CDeCDB = ZB

EF eEFA A �= B . (A.3)

This gives for A = 0, B = 1 the three-form equation22

Z0
23e

231 + Z0
02e

021 + Z0
03e

031

= Z1
23e

230 + Z1
12e

120 + Z1
13e

130 , (A.4)

from which one immediately infers Z0
23 = 0, Z1

23 = 0, as
well as

(
e021 = −e120

)
Z0

02 = −Z1
12 , (A.5)

Z0
03 = −Z1

13 . (A.6)

One sees that they are of the form ZA
AB = −ZC

CB for
A �= C. Thus considering all three equations (A �= B with
A, B = 0, ..., 3) for the components ZA

AB one finally has
(without loss of generality we may set e.g. B = 2)

Z0
02 = −Z1

12 = Z3
32 = −Z0

02 ⇒ Z0
02 = 0 , (A.7)

and thus the trivial solution ZA = 0 is the unique one.

Appendix B: Hat calculus

If we consider the hat operator as acting not only on bi-
forms but on any antisymmetric object XAB with two
SO(3, 1) indices, using the definition

X̂AB :=
1
2
εAB

CDXCD , (B.1)

and raising and lowering indices with the Minkowski met-
ric ηAB we find the following rules.
21 The notion of a bi-form proves to be very useful in mathe-
matics on manifolds. In short, a bi-form is a tensor product of
alternating forms and alternating vectors, i.e. alternating vec-
tors whose components are forms. Thus, for example, a (1, 2)
bi-form Z = ZAEA is a vector which two-form components ZA

with respect to the basis EA. Further useful abbreviations are(
e2)AB = eAB = eA ∧ eB ,

(
e3)ABC = eABC = eA ∧ eB ∧ eC

etc.
22 Here for notational simplicity we deviate from our conven-
tion to underline special Lorentz components.
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Lemma B (hat rules). Let  denote any bilinear operator
and XAB , YAB be any antisymmetric object with indices
A, B = 0, 1, 2, 3; then the following identities hold:

̂̂
XAB = −XAB , (B.2)

X̂KL  Y KL = XKL  Ŷ KL , (B.3)

̂XAL  Y L
B =

1
2

(
̂XAL  Y L

B − ̂XBL  Y L
A

)
,(B.4)

̂XAL  Y L
B =

1
2

(
X̂AL  Y L

B − X̂BL  Y L
A

)
, (B.5)

X̂AL  Y L
B = −XBL  Ŷ L

A , A �= B , (B.6)

X̂AL  Ŷ L
B =

1
2
ηABXKL  Y KL

+ XBL  Y L
A . (B.7)

Of course, this hat operation on operands with anti-
symmetric indices is again linear. Moreover it commutes
with the exterior derivative because εABCD and ηAB are
merely numbers, yielding the identities

̂µXAB + νYAB = µX̂AB + νŶAB , (B.8)

dẐAB = d̂ZAB . (B.9)

Covariant derivatives on bi-vectors are defined by

(DX)AB = dXAB + ωA
C ∧ XCB + ωB

C ∧ XAC . (B.10)

Appendix C: Poisson brackets

Our Poisson brackets are defined as

{A
(
x0, xi

)
, B

(
x0, x′i

)
} (C.1)

=
∫

d3x̃

{
δA

δ ẽAi

δB

δΠ̃Ai
+

1
2

δA

δω̃ABi

δB

δΠ̃ABi
− (A ↔ B)

}
.

An expression like ẽAi is the shorthand for eAi

(
x0, x̃i

)
etc. Note the factor 1

2 in the second term which permits
independent summation of A and B in the antisymmetric
components.

Another simple formula which is crucial in order to ob-
tain brackets of constraints which do not produce deriva-
tives of δ-functions, and in this sense resembling the ones
in Yang–Mills theory, is∫

x′
[ f (x′) δ (x′′ − x) ∂′ δ (x′ − x′′) + (x′ ↔ x) ]

= (∂f) δ (x′ − x) . (C.2)

In order to give an idea of the brackets to be evaluated, a
few examples are given below for different portions of ΩAB

and EA, as defined in (58)–(62). In all cases the terms
in the bracket again are taken at

(
x0, xi

)
and

(
x0, x′i

)
,

respectively; δ
(
xi − x′i

)
= δ, δ,i = ∂i δ:{

ΩAB
(X), aΠA′B′i′}

= a
(
ηAA′

ΠBB′i′ − ηBA′
ΠAB′i′

+ηBB′
ΠAA′i′ − ηAB′

ΠB′A′i′)
δ, (C.3){

ΩAB
(X), R

A′B′i′}
= −

(
ηAA′

RBB′i′ − ηBA′
RAB′i′

+ηBB′
RAA′i′ − ηAB′

RBA′i′)
δ, (C.4){

ΩAB
(X), E

A′
(X)

}
(C.5)

=
(
ηAA′

EB − ηBA′
EB
)

δ

+c
(
eA

i ΠBA′i − eB
i ΠAA′i

)
δ,{

ΩAB
(X), E

A′
(Y )

}
=
(
ηBA′

πAi − ηAA′
πBi
)

δ,i

+
(
ηBA′

EA
(Y ) − ηAA′

EB
(Y )

)
δ

+
(
ωBA′

iπ
Ai − ωAA′

iπ
Bi
)

δ, (C.6){
ΩAB

(Y ), E
A′
(X)

}
= c

(
ΠAA′ieB

i − cΠBA′ieA
i

)
δ, (C.7){

ΩAB
(Y ), E

A′
(X)

}
(C.8)

=
(
ωAA′

iπ
Bi − ωBA′

iπ
Ai
)

δ

+
(
ηAA′

πBi − ηBA′
πAi
)

δ,i,

{ΩAB
(X), T

A′i′}
=
(
ηAA′

TBi′ − ηBA′
TAi′)

δ

+
(
ηBA′

eA
k′ − ηAA′

eB
k′
)

εi′j′k′
δ,j′

+
(
ωBA′

j′ eA
k′ − ωAA′

j′ eB
k′
)

εi′j′k′
δ, (C.9)

{ΩAB
(Y ), T

A′i′}
=
(
ηAA′

eB
k′ − ηBA′

eA
k′
)

εi′j′k′
δ,j′

+
(
ωAA′

j′ eB
k′ − ωBA′

j′ eA
k′
)

εi′j′k′
δ. (C.10)

Appendix D:
Solution for Lagrangian multipliers

The solution of (96) and (97) is most easily established in
the frame (102) and (103), dropping double tildes in this
appendix:

e0
i = 0, ea

i = δa
i . (D.1)

Projecting (96) and (97) upon ∂0ij , respectively, yields 24
inhomogeneous equations for the 18 variables ZAB

0j

ZAB
0j eBk εijk = −1

2
ZAB

jk εijk eB0 ≡ rAi , (D.2)
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ẐAB
0j eBk εijk = −1

2
ẐAB

jk εijk eB0 ≡ r̂Ai , (D.3)

where the RHS are linear in the momenta ΠABi (cf. (65),
(66) and (95)) and in eA

0 .
The projections by ∂123 imply eight restrictions upon

the 18 momenta canonically conjugate to ωiAB :

ZAB
ij eBk εijk = 0 , (D.4)

ẐAB
ij eBk εijk = 0 , (D.5)

which is reasonable because for πAi
e ≈ 0 the effective phase

space should be of dimension 20.
Multiplying (D.4) and (D.5) by eA0 verifies two rela-

tions between the rAi and r̂Ai:

rAi eAi = 0, (D.6)

r̂Ai eAi = 0. (D.7)

In the frame (D.1) and (D.2) and (D.3) are each sepa-
rated into the ones for A = 0 and A = a (position and
combinations of special indices here may be moved freely):

Z
0a
0j εija = r0i , (D.8)

Ẑ
0a
0j εija = r̂0i , (D.9)

and the 18 equations for the 18 ZAB
0j :(

M ij
)a

Z
0a
0j = r̂ai , (D.10)

− (M ij
)a

Ẑ
0a
0j = rai , (D.11)

where for symmetry reasons Ẑ0a = 1
2ε0a

bc Zbc have been
introduced as a second triplet of the Z. Inspection of the
matrices (

M ij
)1

= (0 ε3ij − ε2ij),(
M ij

)2
=
(−ε3ij 0 ε1ij

)
,(

M ij
)3

=
(
ε2ij − ε1ij 0

)
(D.12)

in (D.10) and (D.11) shows that Zab
0j for b �= i only have

one entry in the matrix M , so that e.g. for (D.10) as long
as b �= i

Zab
0i = −εabj r̂ij . (D.13)

On the other hand, for (b) = (i) (this notation indicates
no sum over those indices) e.g. from (D.2) the set of linear
equations

Z
0(a)
0(a) =

1
2

Aa
b r̂bb , (D.14)

Aa
b =

 1 −1 −1
−1 1 −1
−1 −1 1


a

b

(D.15)

follows. However, thanks to (D.7) for unit matrix eai (D.1)
we may use r̂aa = 0 so that (D.13) holds as well for equal
indices b = i. Therefore, with double tilde restored (D.13)

becomes (110) of Sect. 4.3.2, and (D.10) by the same steps
with

Z
0a
0i = r̂ai (D.16)

leads to (109).
So far the searched for 18 variables have been deter-

mined from 18 equations. As expected from the rank of
the system the still unused (D.8) and (D.10) indeed turn
out to be satisfied identically.

In view of the complicated dependence of the velocity
in (99) one could avoid that transformation in the tran-
sition from Z to ˜̃Z by dropping the first condition (D.1).
The strategy of the solutions to (D.2) and (D.3) in prin-
ciple remains the same as indicated above, but, of course,
the solution of the linear system is more involved.
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